Photorealistic Rendering Based on Ray Tracing

Ian Wang Oregon State University

What is Ray Tracing?

- Generate rays from an origin to check for intersection with object, if intersect, return color to pixel
- Primary rays for color, secondary rays for

Ray-Triangle Intersection & 3D Meshes $\begin{bmatrix} t \\ u \\ v \end{bmatrix} = \frac{1}{(D \times E_2) \cdot E_1} \begin{bmatrix} (T \times E_1) \cdot E_2 \\ (D \times E_2) \cdot T \\ (T \times E_1) \cdot D \end{bmatrix} == \frac{1}{P \cdot E_1} \begin{bmatrix} Q \cdot E_2 \\ P \cdot T \\ Q \cdot D \end{bmatrix}$

shadow and light to produce realistic images

- Computationally expensive requires time
- Commonly used to animate movies and video games

- The Möller-Trumbore Algorithm is a ray-triangle intersection equation
- Create a 3D mesh out of triangles and trace each one to render the image
- Quick and efficient method

1600x1200 pixels, 968 triangles, 18 sec. render time Lamborghini Reventón

Examples of Ray-Traced Images

In real life, different materials reflect light in different ways. We are able to use shadow rays to simulate how light

3840x2160 pixels, 21386 triangles, 446 sec. (7.4m) render

Accelerating Ray Tracing

- Put objects in **bounding boxes**
- When testing for intersection,
 - eliminate unnecessary tests by only testing the boxes the ray intersects

In this example,

interacts with

different materials: (glass, metal,

References: mattes, etc.) Shirley, Peter. *Ray Tracing in One Weekend*

the ray only tests intersections in box D because the ray does not hit any other boxes

Thanks to:

Dr. Eugene Zhang, Dr. Yué Zhang, Mr. Jinta Zheng, Mr. Kevin Hung, ASE Saturday Academy, and Oregon State University